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Abstract

Reactive programming improves the design of reactive ap-

plications by relocating the logic for managing dependencies

between dependent values away from the application logic to

the language implementation. Many distributed applications

are reactive. Yet, existing change propagation algorithms are

not suitable in a distributed setting.

We propose Distributed REScala, a reactive language

with a change propagation algorithm that works without

centralized knowledge about the topology of the depen-

dency structure among reactive values and avoids unneces-

sary propagation of changes, while retaining safety guar-

antees (glitch freedom). Distributed REScala enables dis-

tributed reactive programming, bringing the benefits of re-

active programming to distributed applications. We demon-

strate the enabled design improvements by a case study. We

also empirically evaluate the performance of our algorithm

in comparison to other algorithms in a simulated distributed

setting.

Categories and Subject Descriptors D.3.3 [Programming

Languages]: Language Constructs and Features

Keywords Reactive Programming, Scala, Distributed Pro-

gramming

1. Introduction

Reactive applications actively update their state based on in-

complete input that keeps growing over time. Applications

with a user interface that continuously adapt their state to

user’s inputs or applications with a network interface that
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continuously process incoming network packets fall into this

category. Historically, reactivity has been achieved via call-

backs and inversion of control [14], commonly implemented

using the observer pattern to facilitate modular composition.

While successful in decoupling and thus making compo-

nents reusable, the pattern has several major downsides [22].

It requires a lot of boilerplate code; callback interfaces and

registries are re-implemented over and over; client code is

bloated with declarations that wrap business logic into call-

back instances and bloated further by surrounding those with

statements to register and unregister with these registries.

Another issue is that notifications from multiple callbacks

often arrive in unpredictable order. This makes it hard to

avoid inconsistencies in accordingly updating local state,

leading to bugs and bad user experiences.

Reactive Programming [3] (RP for short) simplifies the

modular implementation and improves code quality of re-

active applications. Languages in this class provide reactive

values, abstractions for values that change over time. These

values can be composed and derived in a declarative way.

Their dependencies are tracked: Changes to any value auto-

matically cause the recalculation of all derived values. Code

quality improves since explicit encoding of the observer pat-

tern and callback registries and maintenance of their state

is not needed. Further, dependencies between values are as-

sessed as a whole when deciding on update orders, so that

inconsistencies due to wrong ordering of state updates do

not occur, regardless of module borders.

The dominating category of software today is distributed

applications. This family includes several types of reactive

applications, including Web applications, monitoring sys-

tems, customer analytics, etc. In such applications, reactions

to updates in state and events often have to happen over mul-

tiple hosts. Remote callbacks in the form of remote observer

patterns or callbacks over publish-subscribe systems are typ-

ically used to implement push notifications in such applica-

tions. They therefore suffer from the same drawbacks that

callbacks and the observer pattern cause in the local setting.

Distributed applications can clearly benefit from RP. How-
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ever, existing implementations of RP either target specific

kinds of distributed applications (e.g., only client-side [22]),

do not provide safe value propagation [19], or adopt a syn-

chronization and communication schema that is not accept-

able for interactions between remote hosts [3].

We propose Distributed REScala, which implements SID-

UP (Source IDentifier Update Propagation), an algorithm

for propagating changes in a network of dependent reactive

values that is suitable in a distributed setting. It renounces

properties that are undesirable in a distributed setting, such

as global centralized knowledge about the topology of the

dependency structure among reactive values and unneces-

sary communication and synchronization between changes

in completely independent parts of this structure, while

retaining safety guarantees (glitch freedom [22]). To the best

of our knowledge, such a solution has not been proposed

before. The proposed algorithm thus enables distributed

reactive programming (DRP for short), a powerful paradigm

to design distributed applications.

In summary, we makes the following contributions:

• We characterize the design space of existing algorithms

for change propagation in reactive programming, moti-

vating the need for new algorithms that better suit the

requirements of distributed applications.

• We present SID-UP, an algorithm for reactive program-

ming in distributed applications, thus enabling DRP.

• We analyze and compare the complexity of different

change propagation algorithms, including SID-UP.

• We discuss a small-scale case study to indicate design

improvements enabled by DRP and its performance cost

compared to designs based on distributed observer infras-

tructures.

• We empirically evaluate the efficiency of update algo-

rithms in a distributed setting, and show that SID-UP out-

performs existing algorithms.

While the abstract idea of DRP was presented in a vi-

sion paper [23], the SID-UP algorithm, the comprehensive

discussion of the problems with the state of the art, and the

evaluation, are new contributions of this paper. The imple-

mentation of SID-UP in a prototypical reactive language, the

case study, and all evaluation artifacts are available online1.

2. Background and Motivation

In this section, we introduce the case study used throughout

the paper for illustration and evaluation purposes. We intro-

duce key concepts of RP and motivate our work.

Our case study is ProfitReact, a software system that sup-

ports a manufacturing company. It consists of four modules.

Clients place orders on an incoming server. The purchases

1 http://www.stg.tu-darmstadt.de/research/

Figure 1. Reactive network graph of the case study.

department has a module that calculates a plan for acquir-

ing the resources needed to produce the ordered goods. The

sales department equivalently maintains a plan for delivering

the produced goods. Both plans are updated as the order list

changes. Finally, a management module combines the pro-

jected spending and the projected income, derived from the

purchase and delivery plans respectively, into the projected

profit. It defines an invariant that this profit must never be

negative: Whenever this is violated, a notification is sent out

to a responsible manager. To keep individual department’s

operations independent the four modules should run on sep-

arate machines, thus making the application distributed.

2.1 Reactive Architectures

A reactive architecture is well-suited for ProfitReact: There

is a small number of inputs and a lot of derived state that has

to be updated whenever some of the inputs change. In the

following, we briefly introduce the key concepts of a reactive

architecture and illustrate them by the case study.

Values in a reactive architecture are organized in a de-

pendency graph (DG): Nodes therein represent reactive val-

ues and are connected via dependency relations. Figure 1

shows the graph of the case study (without UI components).

Dashed boxes represent individual hosts. The set of nodes in

the DG is denoted by N . Some nodes can be modified im-

peratively through user code. In the example, these are the

list of orders, the fuel and the resource costs. We denote the

set input nodes as I ⊆ N and visualize them as triangles.

Most nodes’ values are the result of a user-defined computa-

tion using values from other nodes as input, i.e. they depend

on other nodes. The formula that calculates the estimated in-

come from the delivery plan is an example – it is associated

with the node “income” that depends on the state of the “de-

livery plan” value. We refer to the set of dependent nodes as

D ⊆ N with D ∩ I = ∅ and visualize them as circles.

We denote incoming dependencies of a node d ∈ D as
−→
depd (arrow points towards node’s name). In application

code, these correspond to input values to the computation

of d. In a reactive framework, for any n ∈ N , outgoing

dependencies
←−
depn (arrow points away from node’s name)

are maintained automatically. Outgoing dependencies point
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in the direction in which information flows and are used to

push updates through the reactive network.

Derived values in the reactive network react to changes in

their input values. When the system returns to a resting state,

every derived value is up to date with respect to all its com-

putation’s input values. Every change to the reactive network

happens in a so-called update turn. An update turn begins

with the admission phase, where some input nodes C ⊆ I
are imperatively changed by client code. Subsequently, the

propagation phase starts, during which all dependent nodes

are updated to reflect the changes of the input values. Only

nodes reachable along a path of outgoing dependencies from

any changed source can change during a turn; if a node is

not on such a path, no input value and thus also not its out-

put value can change. We refer to the set of all nodes in this

transitively reachable closure as CC with C ⊆ CC ⊆ N
and ∀n ∈ CC, ∀d ∈

←−
depn : d ∈ CC. An update turn ends

after all values are up to date again, returning the system to

a resting state waiting for further inputs.

Every n ∈ N holds a steady value vn at all times and

a pulse value pn that only exists when an update turn that

affected n has not ended yet. Setting pn results in notifying

all outgoing dependencies of n (“pulsing”). A dependent

node that receives such a notification must be reevaluated

as one of its input values changed. This can result in the

dependent node itself sending out a pulse, which causes

updates to ripple through CC during the propagation phase.

An important safety property that reactive networks need

to provide is glitch freedom. A glitch can be defined as any

computation on any node d ∈ D triggered during an update

turn while d’s input values are in an inconsistent state, i.e.

some of them have been updated while others still will be

updated later within the turn at hand. For an example of a

glitch, consider the following scenario from our case study.

A client places a big order, an input change propagated to

purchases and sales modules. If the projected spending is

updated first and the profit is recalculated without waiting

for the updated income projection, a temporary, erroneous,

negative value may be produced, triggering a false alarm.

2.2 Reactive Programming

A reactive architecture can be implemented in different

ways. To implement ProfitReact in an object-oriented lan-

guage one would probably encode explicit updates to reg-

ular variables through the observer pattern [14]. Reactive

programming languages [3], on the other hand, have built-in

support for reactive architectures. They provide abstractions

for reactive values – nodes in the reactive network – used to

model reactive applications declaratively; the updates of re-

active values are managed automatically and in a glitch-free

way. To ensure glitch freedom, a RP language or library em-

ploys a propagation algorithm that ensures that every node is

updated only after all of its incoming dependencies that will

change during the current update turn have been changed.

1 val projectedSpending : Signal[Int] =
SignalRegistry.lookUp("purchases−projectedSpending")

2 val projectedIncome : Signal[Int] =
SignalRegistry.lookUp("sales−projectedIncome")

3 val projectedProfit : Signal[Int] =
subtract(projectedIncome, projectedSpending)

4 val profitIsNegative : Signal[Boolean] =
projectedProfit.map { < 0 }

5 profitIsNegative.observe{ isNegative: Boolean =>

6 if (isNegative) {
7 sendNotificationToManager()
8 }
9 }

Figure 2. Reactive programming code snippet.

1 var lastSpending: Int = 0
2 val spendingObserver = RemoteObserver[Int] { v: Int =>

3 lastSpending = v
4 recalculate()
5 }
6 val purchDept = RemoteObjectRegistry.lookUp("purchasesDept")
7 purchDept.addProjSpendingObserver(spendingObserver)
8

9 var lastIncome: Int = 0
10 val incomeObserver = RemoteObserver[Int] { v: Int =>

11 lastIncome = v
12 recalculate()
13 }
14 val salesDept = RemoteObjectRegistry.lookUp("salesDept")
15 salesDept.addProjIncomeObserver(incomeObserver)
16

17 var difference: Int = 0
18 var wasNegative: Boolean = false

19 def recalculate() = {
20 profit = lastIncome − lastSpending
21 val nowNegative = difference < 0
22 if(!wasNegative && nowNegative) {
23 sendNotificationToManager()
24 }
25 wasNegative = nowNegative
26 }

Figure 3. Code snippet using the observer pattern.

Figure 2 displays a code snippet implementing the re-

active core functionality of the management module of our

case study using our RP framework. The module first looks

up the projected spending and income (line 1 and 2) in

form of a remotely accessed signal (sometimes also called

a behavior), the abstraction for sustained values that change

over time. It composes them to calculate the projected profit

(line 3). This profit signal is transformed to a boolean signal

via a less-than-zero comparison (line 4), which is observed

by user code (line 5) that notifies the manager (line 7) when-

ever the signal’s value changes to true (line 6). As shown

in Figure 2, in a DRP framework, developers should be able

to share locally defined reactive values, such as the orders

list, remotely, reflecting events occurring at the local reactive

on other hosts. This could be done for instance by publishing

them to a public registry, as is an established practice with

remote objects. Remote hosts could look up these remote re-

active values and should be able to compose them with other

local or remote reactive values transparently.

Figure 3 implements the same functionality with the ob-

server pattern, requiring far more boilerplate code. For in-

stance, remotely connecting with, locally reflecting the state

of, and reacting to changes of the projected spending is
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spread over lines 1 to 7 in Figure 3. The same functional-

ity is implemented in the single line 1 in Figure 2. With RP,

the code is reduced to its relevant core. It is not polluted

with the creation of observer instances or callback registry

instantiations and interactions. Further, the implementation

in Figure 3 is more error prone as it uses mutable variables

to coordinate notifications (all var statements). In fact, the

code is vulnerable to glitches due to the race condition be-

tween both observer notifications. Ensuring glitch freedom

would require to break the modularity of the purchases and

sales modules. Currently, their implementations do not dis-

tinguish between a notification caused by an update of the

list of placed orders and one by an update of fuel or resource

costs. In the former case, management has to wait for two

notifications. In the second case, there won’t be be a sec-

ond notification. Exposing this information would require

changes to these modules not related to their core respon-

sibilities. RP instead provides glitch freedom out of the box.

Glitch freedom is as critical in the distributed as in a

local setting. The four dependency edges of the diamond-

shaped graph of the four departments responsible for the

race condition that causes glitches in ProfitReact are routed

over unrelated network connections. For distributed glitch

freedom, edges over network connections thus have to be

respected the same way as local edges. A single propagation

algorithm with a holistic view must be used, as connecting

individually glitch-free networks on each host by observer

notifications would not result in an overall glitch free system.

There are several examples of distributed applications

which require consistency guarantees that are lower than

glitch freedom, for instance eventual consistency. As,

though, there are applications, such as ProfitReact, that do

require glitch freedom, we argue that an implementation for

distributed reactive programming should be capable of pro-

viding this level of consistency. Exploring possible trade-

offs between performance and consistency, for example dis-

abling glitch freedom in cases where the performance cost is

too high, is left to future work.

2.3 Dynamic Dependencies

Dependency graphs of reactive applications may be dynamic

in that nodes’ incoming edges can change during update

turns: New edges can be added and existing ones can dis-

appear or be replaced. This supports important features such

as conditionally accessed input values and higher-order re-

actives2.

Conditionally Accessed Input Values. The simplest exam-

ple of dynamic dependencies comes from computations that

access some of their inputs conditionally. An example is a

signal z defined as if c then x else y, where c, x,

2 We do not address dynamic dependency discovery as employed by most

other frameworks’ Signal{ ... } [21, 24] or Rx{ ... } [26] syntax,

but this exhibits the same phenomena in terms of DG changes and can thus

be handled and supported identically.

Figure 4. Dynamic dependencies caused by conditionals.

and y are signals. At any point in time, the value of z de-

pends on the current value of only two of its sub-signals: c

and only one of x or y. Thus, the dependency on either x or

y can be removed from the DG, as depicted in Figure 4: The

dependency of z on c is static, but the incoming edges from

x and y change dynamically, whenever c changes.

Propagating changes of y to z would cause unnecessary

reevaluations of z as long as c is true. Conditionally ac-

cessed input values allow temporarily removal of not needed

dependency edges at the cost of a topology change. This is

a well-known technique to avoid unnecessary re-executions

of potentially expensive computations [8, 22]. For instance,

in the example, when c changes much less frequently than x

and y, such a trade might prove valuable.

Higher-Order Reactives (HOR’s) are reactive values that

refer to other reactive values. For illustration, consider

Figure 5. It depicts the relation between the state of

a GUI and of the underlying DG of a minimal reac-

tive application example. The GUI displays a list of

Person instances (marked 1), from which the user can

select one (shaded gray), which is reflected in the node

selection of type Signal[Person] (marked 3). On

the left-hand side, the selection is personA (marked

2a), on the right-hand side personC (marked 2b). Each

Person has a property name – a mutable string of type

Signal[String], modified from a different source each.

The higher-order signal selectedNameSignal of type

Signal[Signal[String]] (marked 4) is obtained by

mapping the selection signal to its value’s name. We

refer to the higher-order signal as the outer reactive and the

name signal it holds as its current value as the inner reactive.

The signal selectedPersonName is obtained by flat-

tening the HOR selectedNameSignal. Flattening con-

verts a signal of a signal of a value into a regular signal of a

value, thereby hiding that the current value in fact depends

on the current state of multiple nested reactive values. Nodes

that perform flattening depend on the value of both the outer

and inner signal of a HOR and thus entail dynamic incom-

ing dependencies. selectedPersonName depends stati-

cally on the outer signal selectedNameSignal, but dy-

namically on the inner signal name. This inner dependency

switches between name signals of Persons, whenever the

outer signal’s value changes as the user selects a different

Person. In Figure 5 this is depicted by the bold dependency
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Figure 5. Dynamic incoming dependencies caused by changes to higher-order reactives.

edge switching between the name signal of personA on

the left-hand side and that of personC on the right-hand

side.

While desirable but optional in the local setting, we con-

sider HORs a must-have in the distributed setting: Con-

trolled and purposefully adding and removing edges allows

one to attach and detach subsections at the “front” of the

DG, i.e. inserting sections with new inputs, instead of only

extending the graph by additional dependent nodes at the

“back” end. In a distributed setting, where hosts with indi-

vidual subgraphs can join or leave the application, e.g., a

client with its own user inputs joining or leaving a multi-

player game, a safe way to connect these subgraphs into the

application is required. HORs are the de-facto mechanism

that solves this problem.

2.4 Change Propagation in a Distributed Setting

The discussion so far suggests that RP would be as use-

ful for distributed applications as it is in a local setting.

Hence, providing a framework for DRP is a desirable goal

to achieve. Every propagation algorithm can be extended to

work on distributed reactive networks. Yet, the distributed

setting presents changed and additional requirements.

The first major difference is that remote method calls

are a lot slower and more expensive than local calls. They

are affected by network latency and all information required

by a remote invocation must be marshalled back and forth,

which requires additional computational resources. Second,

global, unbounded one-to-many communication, where one

host has to be able to reach all other hosts, is impossible or

at least extremely difficult compared to many-to-one com-

munication. The former requires to maintain a lot of address

bindings and lists of participating hosts, whereas for the the

latter only one single host has to be bound to a known reach-

able address. This is demonstrated by the popularity of clien-

t/server models and by client/server models being used even

in almost all distributed end-user applications for dynamic

host discovery to bootstrap and facilitate other communica-

tion topologies.

Next, we discuss shortcomings of existing propagation

algorithms based on the requirements just outlined.

Topological Sorting with Priority Queue. The most

widely adopted glitch-free update propagation algorithm [8,

19, 21, 22] separates the DG into layers. All input nodes be-

long to layer 0 and all dependent nodes belong to the layer

one above their “highest layer” incoming dependency. Dur-

ing the update turn, the layer number is used to populate

a priority queue holding all nodes that must still be reevalu-

ated. Initially, it contains all source nodes that were modified

during the admission phase. Nodes are dequeued individu-

ally in order and reevaluated. If a node pulses, all nodes that

depend on it are added to the queue. The turn completes once

the queue is empty. To run this algorithm in a distributed set-

ting, the priority queue need to be managed by a central co-

ordinator, which would need remote control over all nodes

in the reactive network on every host, yielding unbounded

one-to-many communication. All node reevaluation would

be executed via sequential individual synchronous remote

invocations, crushing all potential for parallel computations

with severe impact on performance.

Parallel Propagator in Scala.Rx. In Scala.Rx [26], the

propagation algorithm is wrapped into a Propagator in-

terface, which models a strategy pattern that allows one to

exchange the propagation algorithm. The default algorithm

is the topological sorting with priority queue from above.

But, Scala.Rx also offers a parallel propagator, which de-

queues and reevaluates all nodes of the lowest layer in the
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priority queue concurrently. As by construction, nodes on

the same layer can not depend on each other and all nodes

on the lowest layer are also ready for reevaluation without

producing glitches. Converting this algorithm into a dis-

tributed version can be done in the same way as with the

basic topological sorting algorithm. The major improvement

is that the layer-wise concurrent execution of several of the

previously synchronous remote calls reduces the length of

the chain of calls. However, the algorithm still relies on un-

bounded one-to-many communication and still enforces a lot

of unnecessary sequentiality: Nodes on different layers that

do not have a path of dependencies between them should not

need to wait for each other.

Decentralized Flooding in ELM. In ELM [9], a central

coordinator broadcasts every update turn’s start to all input

nodes. After the admission phase, all changed input nodes

send out a “change” pulse and all unchanged input nodes

send out a no change pulse. During the propagation phase

nodes act purely based on received pulse notifications with-

out any coordinating entity, updating as soon as they re-

ceived a pulse from each incoming dependency for the cur-

rent turn. Dependent nodes only update when at least one of

their incoming dependencies sent a changed pulse; if they

complete processing a turn where they would not pulse, they

send out a no change pulse instead. Hence, every node, in-

cluding completely unaffected ones, is involved in every

update turn. Devising a distributed version would require

the coordinator for the admission phase to be converted to

a centralized entity. The coordinator is inactive during the

propagation phase, meaning no unnecessary sequentiality

is enforced. But, as the admission phase requires a broad-

cast to all sources from the coordinator, ELM also relies on

unbounded one-to-many communication. Further, process-

ing every update turn at every node implies a lot of wasted

computational resources, as messages have to be processed

in parts of the system that are completely unrelated to the

changed input data.

Unlike other reactive systems, which propagate a single

change at a time, ELM supports pipelining – multiple se-

quential turns can propagate through the dependency graph

at the same time, in the form of sequential wave fronts.

This feature is especially desirable in the distributed set-

ting, where remote communication strongly increases update

turn duration. Unfortunately, ELM’s pipelining is inherently

incompatible with dynamic dependencies in the topology

graph. To allow different nodes to process different turns at

the same time, every edge in ELM buffers every pulse mes-

sage sent over it until its end node reads it while processing

the respective turn. If new edges are created during an up-

date turn, their start node may already be several turns ahead

of their end node. In such a case, the pulse value required

by the end node to complete its turn is no longer available

at the start node and not stored in the buffer, because the

edge did not exist when the value was sent out. Thus the end

Figure 6. A reactive network with source identifier sets.

node is missing that value and gets stuck, unable to com-

plete the turn; this blocks this turn and all successive turns

from further progress, thus breaking the entire application.

Without dynamic dependencies, ELM and its implementa-

tion of pipelining is unable to support higher-order reactives

and hence not feasible for use in any distributed application

with a potentially changing set of connected hosts.

3. The SID-UP Propagation Algorithm

The design of SID-UP was driven by two goals: (a) Reduce

communication outside of the regular pulse messages to a

minimum, and (b) avoid unbounded one-to-many commu-

nication completely. The novelty of SID-UP consists of the

combination of the following properties:

• Support for distributed reactive programming with re-

mote reactives

• Glitch-freedom both in local and distributed settings

• No unbounded one-to-many communication

• No centralized coordinator during propagation phases

• Support for fully-fledged reactive programming, includ-

ing dynamic dependency features – like higher-order re-

actives for dynamic network topologies

• Exploitation of concurrency potential (respecting glitch-

freedom) for node re-evaluations

• Limited amount of remote communication – less than

existing propagation algorithms

To achieve these properties, we implement all dependent

nodes as individually acting threads with their actions gov-

erned solely by the pulses they receive. Each node stores in-

formation about the source nodes it is transitively connected

to. Each pulse carries information about the sources changed

during the admission phase of the update turn. Only nodes

transitively reachable from changed sources and the edges

between them are involved in transmitting and waiting for

pulses. The remainder of this section describes in detail the

inner workings of SID-UP.
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3.1 The Basic Algorithm

Topology of the Dependency Graph. Every source node

i ∈ I is tagged with a globally unique identifier idi. Ev-

ery node n ∈ N in the DG holds a subset of identi-

fiers sn ⊆ {idi : ∀i ∈ I}, representing sources from

which n is reachable along some path in the DG. Obvi-

ously, ∀i ∈ I : si = {idi}. For a dependent node, d ∈ D,

sd =
⋃

n∈
−→
dep

d

sn; sd is initially calculated when d is newly

created and added to the DG. This provides in each turn

∀n ∈ N, ∀i ∈ C : idi ∈ sn ↔ n ∈ CC (recall: CC is

the closure transitively reachable from changed sources C).

For illustration, consider the DG in Figure 6. The in-

coming dependencies of the node labelled a are tagged

with sets (from left to right) {1, 2, 3}, {3} and {4}; thus

sa = {1, 2, 3, 4}. This correlates with a being transitively

reachable from the source nodes 1, 2, 3, and 4. Node b has

incoming dependencies tagged with (from left to right) {0},
{0} and {1} and thus sb = {0, 1}.

Admission Phase. The admitting thread collects the iden-

tifiers of all sources it changes in t := {idi : ∀i ∈ C}, which

is attached to pulses sent during the turn. Figure 6 shows the

DG right after the admission phase. Only source node 2 was

changed, thus t = {2}. Since only changed sources send out

pulses, these are “change” pulses. Bold arrows in the fig-

ure represent pulses that have been sent out, but not yet pro-

cessed. Nodes reachable from t are shaded grey. They must

be reevaluated and need to process and send pulses during

the update turn.

Update turns in SID-UP must happen mutually exclusive:

Concurrent updates may cause glitches by exposing partial

results to each other whenever they affect the same node in

the DG. If this can not be guaranteed by the nature of the

application, a centralized coordinator is needed during the

admission phase. Every thread that wants to admit a change

must first contact this coordinator to acquire exclusive ac-

cess to execute an update turn. After the turn completes, the

exclusive access is relinquished to allow the next update turn

to start. These are the only two messages outside of regular

pulses in SID-UP and they require many-to-one communica-

tion only. Supporting concurrent update turns, thus getting

rid of the centralized coordination, is ongoing work.

Propagation Phase. Each n ∈ N stores information about

its “pulsing” state in the current propagation phase as a pulse

value pn ∈ {pending, unchanged, changed}; the initial

value for each update turn is pending. After reevaluation,

the value is changed or unchanged until the turn ends. In

both cases, the node sends a pulse notification to all outgoing

dependencies.

When a node d receives a pulse and pd = pending, it

iterates over its incoming dependencies dd ∈
−→
depd. For each

dd, it (a) checks whether dd has pulsed (pdd 6= pending)

and (b) calculates the set of changed sources which dd is

reachable from as xdd := t∩sdd. Observe, that xdd = ∅↔

dd /∈ CC. If ∃dd with pdd = pending ∧ xdd 6= ∅, dd still

has to pulse. Hence, d resumes to wait for further incoming

pulses. Otherwise, d initiates the reevaluation procedure.

For illustration, consider the node n in the center of Fig-

ure 6. On receiving the pulse via the bold incoming edge,

it queries its dependencies left to right: For the left-most de-

pendency l, pl = pending, and xl = t∩sl = {2}∩{1} = ∅,

meaning l /∈ CC and thus not involved in the update turn,

i.e. n does not need to wait for it. The next dependency is the

source node with identifier 2, whose pulse value is changed,

meaning n does not need to wait for it either. For the depen-

dency on the right, r, pr = pending, as no pulse has been

sent via this edge yet, and xr = t ∩ sr = {2} ∩ {2, 3} =
{2} 6= ∅. Thus, r is involved in the update turn and n must

not reevaluate yet, but wait for the missing pulse from r to

avoid a glitch.

Once a node d ∈ D receives its last pending pulse, it

begins the reevaluation procedure. If ∃dd ∈
−→
depd, pdd =

changed, d must be reevaluated (at least one input to the

computation associated with d changed). This can either

(a) change d’s state, resulting in pd := changed, or (b)

leave d’s value unchanged, resulting in pd := unchanged.

In both cases, a pulse is sent out immediately after. Once

a node pulsed, it will not reevaluate again until the turn

completed. If no dependency changed, i.e. ∀dd : (pdd =
pending ∧ x = ∅) ∨ (pdd = unchanged), reevaluation is

not needed and pd is set to unchanged directly. In all cases,

the set t received with all incoming pulses is forwarded with

every pulse emitted by d.

To avoid storing the values of a node n redundantly on ev-

ery node d ∈
←−
depn, locally d accesses the values pn and vn

in pull mode. Remotely, however, this would imply commu-

nicating back and forth over network connections for send-

ing the pulse and then retrieving the values. To avoid this

and minimize the amount of remote communicatoins, de-

pendency edges on remote reactives are bridged by mirror

nodes. If d is on a different host than n, a mirror node mn is

created on d’s host (and every other remote host where n is

used) and d actually depends on mn. A special dependency

on n’s host pulls the values from n whenever it pulses and

sends them to mn in a single message. Remote communica-

tion requires FIFO, exactly-once delivery, as provided e.g.,

by TCP. Upon reception, mn then pulses and offers the val-

ues to d locally via regular pull-based access. In summary,

values are stored once per host and accessed pull-based lo-

cally, but duplicated push-based between hosts. In addition

to avoiding local value duplication and minimizing remote

messages, this enables reasoning about the interaction be-

tween nodes without concern of remote edges, as any values

are always provided by local nodes.

We assume no node or link failures, as these would make

glitch freedom impossible. Handling failures is left for future

work. Communication in SID-UP, except for the single coor-

dinator message per turn (if needed), can be asynchronous.
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Yet, to determine the moment at which an update turn com-

pletes, eventual reply messages in the style of Dijkstra and

Scholten’s Diffusing Computations [12] have to be awaited.

3.2 Handling of Dynamic Dependencies

SID-UP supports dynamic dependencies and as a conse-

quence can handle dynamic network topology changes, such

as connecting or disconnecting hosts, through higher-order

reactives. The challenge created by dynamic dependencies

lies in the source identifier sets that each node stores. These

sets hold information about the topology of the graph lead-

ing up to a node, which becomes invalid when that topology

changes. This occurs first on the immediate nodes whose in-

coming edges change and transitively affects their dependent

nodes, as for those one of the identifier sets from one of their

dependencies changed. When a set becomes invalid, it has to

be updated to restore correct behavior and to provide glitch-

freedom for future turns.

To transitively update identifier sets, SID-UP reuses the

change propagation mechanism of the normal node values.

Like normal change propagations, sn can change only for

n ∈ CC. Just like vn and pn, sn is the result of a calculation

that aggregates the values of the n’s direct incoming depen-

dencies. As with regular value changes, each node keeps

track of the changes to its source identifier sets through a

second flag that is set to either changed or unchanged. Just

like the node’s steady and pulse value are recalculated when-

ever any dependency pulsed, the node’s source identifier set

is recalculated when any dependency’s source identifier set

changed. If for all dependencies the set did not change or the

node was not involved in the turn, the set update is skipped

and recorded as unchanged immediately. Each node’s single

pulse for the turn is sent out only after both value and set

recalculation (whichever were required on the given node)

finished.

3.3 Correctness

We assume that the user-defined computations associated

with each node terminate and consider correctness to be

the following: Every update turn (a) is glitch-free, and (b)

updates all nodes that need to be updated and terminates.

Proof of (a). By construction a node evaluates at most

once during a turn. Hence, proving glitch freedom only re-

quires to prove that no node evaluates before all its incoming

dependencies have completed their updates. We show this by

induction over the update propagation.

The induction hypothesis is that all dd ∈
−→
depd ∩ CC

(predecessors transitively reachable from changed sources)

have updated glitch-freely. The induction base considers all

changed source nodes in the turn. They fulfill this by con-

struction, sending out a single, final pulse at the end of the

admission phase, when no more changes can be admitted

for the turn. The induction step considers the update propa-

gation over a dependent node d ∈ D. Before reevaluating, d
awaits the hypothesis to be fulfilled via pulses from all dd.

Any predecessor dd ∈
−→
depd \ CC cannot change during the

turn. Thus, waiting only for pulses from dd ∈
−→
depd ∩ CC

suffices to guarantee that all dd ∈
−→
depd are in a consistent

state before d reevaluates. Hence, d’s update is glitch-free,

sustaining the hypothesis.

The step is valid for dynamic nodes too. The set of incom-

ing dependencies that such nodes must wait for may change

during the update. But, whenever that happens, they simply

re-perform the same waiting checks on these new dependen-

cies. Once a dynamic node determines that all its incoming

dependencies are in a completed state, the induction hypoth-

esis implies that these nodes will not change again. Since the

set of dependencies can only change based on updates from

incoming dependencies, it is thus final as well. This guaran-

tees the update executed at this state to be glitch free. Hence,

the induction hypothesis is sustained for dynamic nodes, too.

Proof of (b). First, we show that a propagation turn can-

not get stuck: If there are still dependent nodes that need to

reevaluate, at least one of them is ready to do so. We show

this by contradiction. Assume there is a node d waiting in-

definitely for a pulse from some dd ∈
−→
depd. By construc-

tion, the set intersection checks guarantee that dd ∈ CC. As

sources in CC always pulsed, dd must be a dependent node.

For it the same logic applies iteratively, creating a waiting

path. As the DG is finite and acyclic, no such path of infinite

length can exist, contradicting the assumption.

The property holds for dynamic dependencies too. When

their dependencies change, dynamic nodes first register as

dependent on the new dependencies and then query them

for their pulse state. Since nodes set their pulse value be-

fore sending out the pulse notification, this order guarantees

seeing either the set pulse value or receiving the pulse noti-

fication or both, but makes it impossible to miss both. Thus

there is no way to miss any new dependency’s update com-

pletion, thereby guaranteeing that the dynamic nodes do not

get stuck indefinitely, either.

By construction, every node always sends every pulse

to all its outgoing dependencies. Given that nodes cannot

get stuck waiting, an update turn is guaranteed to reach all

nodes in CC, which is a super-set of all nodes that must

be updated during the turn (cf. Section 2.1). As all nodes’

updates are glitch-free and every node does indeed update if

it receives a pulse and at least one of its dependencies has

changed, it is guaranteed that all nodes that must be updated

will be updated. Further, once every node in CC has finished

updating, the propagation phase and thus the turn terminates.

4. Comparison to Existing Approaches

We compare SID-UP to existing algorithms by an example

scenario and by complexity analysis. The comparisons are

not meant to be rigorous, but to give intuitions of why SID-

UP outperforms other solutions, as shown in Section 5.
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Figure 7. Visual comparison of update propagation with different algorithms.

4.1 Example-Based Comparison

To highlight the advantages of SID-UP, Figure 7 shows

how an update propagates through a DG with different ap-

proaches. Bold edges represent pulse notifications pend-

ing processing by their receiving node. Bold-outlined nodes

have just processed their incoming notifications and pulsed.

Nodes shaded gray have reevaluated.

Scala.React and Scala.Rx (1st and 2nd timeline) proceed

in topological order. The processing layer is highlighted by

the overlapping rectangle. Scala.React is single-threaded:

Only a single node in the rectangle is updating (shown in

bold) at any point in time. In Scala.Rx all nodes on the

same layer are updated concurrently, reducing the number of

steps the algorithm requires in trade for some synchroniza-

tion overhead after each level. In Scala.React and Scala.Rx

bold dependency edges and bold-outlined nodes correspond

to messages that have to be transmitted: The former are

transmitted between the nodes at each end of the edge, the

latter between the node and the centralized priority queue.

As outlined at the end of Section 2.4, ELM in its origi-

nal form is not suitable for the distributed setting, because

its pipelining feature renders HORs impossible, and is ac-

tually incomparable to the other algorithms. Yet, for com-

pleteness we include it in the comparison, but make sure

that its differences to the other algorithms show no effect

by looking at a single turn without topology changes in the

graph. ELM (3rd line) does not have a priority queue that re-

stricts reevaluations to a single active layer. As can be seen

from the figure, nodes update in different layers of the graph.

As nodes reevaluate after each incoming edge is bold with-

out authorization from a coordinator, only bold dependency

edges correspond to messages. Nodes with a bold outline do
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not require a message to be transmitted, reducing the amount

of remote communication. The price to pay is that all nodes

must process every turn, propagating no change pulses in

unaffected areas of the DG.

Similar to ELM, SID-UP (fourth line) requires no co-

ordinator during propagation. But, SID-UP significantly re-

duces the number of messages: There are far less bold de-

pendency edges than in ELM’s timeline. With the set inter-

sections, only nodes reachable from changed sources must

become active during a turn. The reduced number of mes-

sages does not necessarily indicate a faster termination of

the update turn: While ELM for every received message

only decrements a counter, SID-UP computes set intersec-

tions and sometimes unions, increasing the time per step.

4.2 ELMs

From the intuitive comparison above, except that it affects

more nodes, ELM’s propagation model behaves just like

other algorithms, which are compatible with dynamic de-

pendencies. It seems like it should be possible to devise an

algorithm that combines the propagation model with sup-

port for dynamic dependencies. Indeed, to enable a more

complete evaluation, we devised such an algorithm, called

ELMs, which we give here an overview of.

ELMs is a mixture of SID-UP and ELM: Starting from

SID-UP’s implementation, we added ELM’s global update

propagation by collecting all sources into a centralized co-

ordinator which initiates update turns globally. Further, we

stripped the source identifier sets from all nodes, replacing

the set intersection check with the constant true, as every

node always processes every update turn in ELM. The re-

sulting algorithm behaves just like ELM when propagating a

single update turn, such as in the intuitive comparison above,

requiring unbounded one-to-many communication from the

coordinator during the admission phase and executing the

propagation phase without coordinator involvement or set

operations. But it trades off pipelining against support for

dynamic dependencies: Successive update turns are exe-

cuted sequentially instead of pipelined (hence the s suffix

for the name), which allows nodes to retain their pulse value

until the end of each turn. This way, dynamically added de-

pendency edges will never miss a pulse value from their start

node already having progressed to future turns. This makes

dynamic dependencies safe to use, thus rendering the algo-

rithm feasible for use in dynamic network topologies by sup-

porting HORs and comparable to the others.

4.3 Complexity Comparison

SID-UP is designed to reduce the number of remote mes-

sages and to enable computations on different hosts to pro-

ceed asynchronously as much as possible. Our analysis un-

folds along these two dimensions. For simplicity, we assume

a fixed topology of the dependency graph.

Turn Evaluation Time. Initially we assume that all nodes

require the same processing time const to reevaluate.

In Scala.React, all nodes are evaluated sequentially, so

TScala.React ∼ u · const. In Scala.Rx, nodes on the same

level are evaluated in parallel. Hence, the total time depends

on the topology. The worst case is when there is one node

per level, resulting in the execution time being equal to that

of Scala.React, TScala.Rx,W ∼ u · const. In the best case,

all nodes are on the same level and can be reevaluated in

parallel, hence TScala.Rx,B ∼ const.
Under the assumption that nodes have equal computation

time, SID-UP and ELMs exhibit the same performance as

Scala.Rx: CSID−UP,W = CELMs,W ∼ u · const and

CSID−UP,B = CELMs,B ∼ const. If nodes have different

computation times t(ni), SID-UP and ELMs can perform

strictly better than Scala.Rx.

Figure 8. Two

branches in a DG.

This is the case for dependency

graphs with parallel branches;

for simplicity we assume binary

branches. Figure 8 shows an exam-

ple with two branches A = a1...an
and B = b1...bm, where ai and

bi are sequences of nodes. In

Scala.Rx, nodes are processed

level by level: Nodes a1 and b1
are processed in parallel, then a2
and b2, etc. The time required to

process each level is bound by

the slowest node of the level, in

the example max(t(ai), t(bi)).
In summary, the time required to

process all nodes in the branches is

TScala.Rx,branch =
∑max(n,m)

i=1 max(t(ai), t(bi)) where,

for simplicity, we assume t(ai>n) = 0 and t(bi>m) = 0 to

account for the case n 6= m.

In SID-UP and ELMs, evaluation does not progress

level by level. Consider the case where a1 and b1 in Fig-

ure 8 start being evaluated in parallel. When a1 com-

pletes, a2 starts being evaluated even if b1 did not com-

plete yet. Hence, the time required to evaluate a branch

is the sum of the time of each node in it, e.g., for

B,
∑m

i=1 t(bi). Overall, we have TSID−UP,branch =
TELMs,branch = max(

∑n

i=1 t(ai),
∑m

i=1 t(bi)). It is

easy to see that TSID−UP,branch = TEMLs,branch ≤
TScala.Rx,branch. SID-UP and ELMs are mostly equal with

respect to user computations, except for specifically con-

structed cases. They thus usually only differ due to differ-

ences in their computational overhead per node.

Number of Messages. Let c = |CC| be the number of

nodes transitively reachable from any change source through

outgoing dependency edges, and u the number of nodes

actually updated (i.e. pn = changed). Because only nodes

in CC can change, it follows that u ≤ c ≤ n, where

n = |N |. In a complete graph there are e = n2 edges.
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In Scala.React, propagation reaches only nodes actually

updated: Outgoing dependencies of a node are enqueued

in the priority queue only if that node’s value changed.

Each such node receives a message from the coordinator

to initiate its reevaluation. Hence, the number of messages

for a propagation turn in Scala.React can be estimated as

MScala.React ∼ (u2 + u), i.e. pulse messages over all out-

going edges from updated nodes plus messages sent by the

coordinator. Since the communication scheme is identical,

the same analysis applies to Scala.Rx. SID-UP has no coor-

dinator during propagation and transmits messages only over

edges between nodes in CC, resulting in MSID−UP ∼ c2.

ELMs has no coordinator during propagation either, but

sends a message over each edge, thus MELMs ∼ n2.

In practice, three phenomena occur. (a) Dependency

graphs are usually sparse, i.e. e→ n. Thus, MScala.React ∼
u+u = 2u, MSID−UP ∼ c and MELMs ∼ n. (b) Propaga-

tion phases that leave many nodes in CC unchanged are rare,

meaning u→ c. (c) Propagation phases that affect the entire

graph are rare, too, so c≪ n. Thus, usually, MScala.React
∝
∼

MSID−UP as u ∼ c and MScala.React ≤ MELMs as well

as MSID−UP ≤MELMs , since u ∼ c≪ n.

5. Evaluation

We empirically evaluate SID-UP to answer two questions:

(a) Does DRP based on SID-UP yield improved design/code

quality at reasonable performance cost? (b) Is SID-UP more

efficient than existing algorithms in a distributed setting?

5.1 Case Study

For the evaluation, we separate the case study application

from Section 2 into two domains: One encompasses local

computations and user interface, the other encompasses the

remote value propagation and observation. Reactive pro-

gramming can be used for either of these domains. Its ben-

efits on (local) reactive computations have already been em-

pirically demonstrated [24]. We thus purposefully do not

compare the application’s entire code base: To avoid these

known benefits affecting the measurements of code metrics

for the parts relevant to distributed reactive programming,

we excluded any user interface and bootstrap code from

the experiment. All measurements in the following therefore

only compare the part of the application responsible for re-

motely propagating value updates.

We organized the evaluation as follows: We compared

the case study with a variant for the remote value propaga-

tion based on the observer pattern and one based on reac-

tive programming. Since we implemented both the remote

observers as well as remote reactives on top of Java RMI,

this demonstrates the impact caused purely by the different

programming models, independently of what kind of mar-

shalling technique is used for remote calls. As explained in

Section 2.1, the application requires glitch freedom to work

correctly. While for reactive programming, this is provided

Metric Observer Unsafe Observer Reactive

LOC 95 82 60

Callbacks 3 3 0

Vars 8 7 0

Vals 3 3 10

Table 1. Metrics extracted from the case study

automatically, in the observer-based variant we had to imple-

ment glitch freedom as part of the application logic. There is

a multitude of options for implementing this, e.g., by fixed-

time waiting as in clocked hardware, or by registering man-

agement as an observer on the order depot to always be no-

tified last, after both purchases and sales have been notified,

thereby relying on invocation order. We chose to simply at-

tach a boolean flag in the notifications from sales and pur-

chases that informs management, whether it must wait for

the respective other department. While this is a clear vio-

lation of modularity (purchases encodes knowledge about

the data dependencies in sales and vice versa) and far less

flexible than reactive programming, it is the most efficient

solution in terms of additional lines of code and minimal

performance cost.

Code Metrics. Table 1 shows software code metrics, which

are indicators for the quality of the source code, from com-

paring an implementation based on distributed reactive pro-

gramming (column Reactive) with an implementation based

on remote observers with manually implemented glitch free-

dom (column Observer). We also compare against an unsafe

remote observer variant, which is the same as the regular

observer variant, but without the manual glitch freedom im-

plementation (column Unsafe Observer).

As can be seen from the table, distributed reactive pro-

gramming achieves the best metrics, indicating it provides

the best code quality: There are fewer lines of code (line

LOC) due to removal of callback wrapping code (line Call-

backs) and of the manual glitch freedom implementation.

As a result, the code is free of bloat and only models the

actually desired application functionality. Further, we were

able to remove all manually maintained mutable variables

(line Vars) from the code and rewrite the application en-

tirely using constant variable declarations (line Vals) refer-

encing reactive abstractions that encapsulate this mutability.

This indicates that implementations based on distributed re-

active values are also more robust than those built using re-

mote callbacks, as bugs from accidental and erroneous man-

ual state mutations are made impossible. Further, it provides

glitch freedom without requiring violations of modularity in

any department. A qualitative analysis of a small piece of

this code base was provided for the snippet in Figure 2 (re-

active programming) and the snippet in Figure 3 (unsafe ob-

server) in Section 2.
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Figure 9. Performance of the case study.

The comparison against the unsafe observer implementa-

tion shows that the above advantages still apply to software

that does not require glitch freedom. Removing the man-

ual glitch freedom implementation lessens the gap in terms

of code metrics. Yet, column unsafe observer still exhibits

worse metrics than reactive.

Performance Cost. For the performance comparison, we

inspected again only the part of the application concerning

remote value propagation. Both the application responsive-

ness for the user as well as the amount of data throughput de-

pend mainly on the time it takes for every input value change

to be propagated through the entire application. To measure

this time, we implemented a loop that publishes a new list of

orders at the order depot whenever the previous update had

taken effect in management (cf. Figure 1).

Figure 9 shows the amount of time required to perform an

increasing number of subsequent update turns. Each update

turn sets a new list of ten orders in the order depot. Unsur-

prisingly, the implementation based on remote observers is

faster in completing pushing updates through the applica-

tion. This is easily explained, as the generality of reactive

programming comes at a cost. In our case, this cost consists

of the operations performed with all the source identifier sets

on each node. Though, as the graph shows, the processing

time of reactive programming supported by SID-UP still ex-

hibits similar complexity and only increases required time

by a factor of approximately 10% in this case.

5.2 Benchmarks

To empirically compare SID-UP with existing algorithms,

we implemented a benchmark in form of a reactive network

through which we propagate an update. The algorithms be-

ing compared are expected to perform differently on differ-

ent topologies due to various approaches for parallelism and

message transmissions. Hence, we assembled a graph from

modules implementing various topologies. Figure 10 shows

a schema of the graph we used. The “chain” module im-

plements a linear chain of reactive nodes that does not al-

Figure 10. Graph used in the benchmarks.
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Figure 11. Distribution of dependency degrees.

low parallelism. The “regular” module implements a graph

with some nodes connected with varying degrees of fan-in

and fan-out dependency connections that allows some paral-

lelism. To be realistic, these degrees are chosen according to

statistic distributions, which we measured by instrumenting

20 local reactive applications we developed in previous case

studies; Figure 11 shows the distribution of the number of

nodes for each value of incoming degree (left) and outgo-

ing degree (right). The “fan” module implements a topology

where one node fans out into a lot of immediate successors,

all of which can be reevaluated concurrently. Each module

contains 25 nodes and both “regular” and “fan” contain a

few nodes whose values do not change during the update

turn, i.e. although a dependency changes, they update to an

unchanged pulse value or equivalently do not add their out-

going dependencies to the priority queue. Updates can be

initiated inside each module separately through individual

source nodes, although for the duration benchmarks we al-

ways update all sources to affect the entire graph. Finally, a

dependent node at the end unifies the updates from all mod-

ules to detect the update turn completion.

Optimizations of the dependency graph’s topology may

improve the performance of reactive programs. Since typi-

cally each node in the graph introduces a certain amount of

overhead, optimizing the topology by reducing the number

of nodes leads to better performance. The most prominent

technique here is Lowering [6]. We performed our analy-

ses without applying such techniques, as they are orthog-
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Figure 12. Update turn completion duration over increasing latency with few and many sources.

onal to the propagation algorithm in use. Each algorithm

simply traverses and interacts with the topology graph, opti-

mized to not. Whether or not the graph has had some nodes

collapsed into fewer nodes does not change these interac-

tions. Vice versa, topology optimizations do not require any

involvement from the run-time propagation algorithm and

can be computed statically. That said, we expect such opti-

mizations to benefit SID-UP the most of all included algo-

rithms because SID-UP with its comparatively very complex

set operations has the biggest overhead per node. Evaluat-

ing the effectiveness of different combinations of topology

optimizations and propagation algorithms would be an in-

teresting study, but extends beyond the scope of this paper.

The experiments compare five propagation algorithms3:

Scala.React’s and Scala.Rx’s implementation of sequential

topological sorting with priority queue, Scala.Rx’s imple-

mentation of the parallel propagation strategy and our ref-

erence implementation of SID-UP. We also include our SID-

UP ELM hybrid algorithm ELMs from Section 4.2 to mea-

sure the overhead caused by the set operations used in SID-

UP: As we showed in Section 4.3, SID-UP and ELMs exhibit

the same turn durations in terms of user computations and

only differ in execution time only by their individual com-

putational overhead per node.

We “distribute” the graph in Figure 10 by pretending that

each module runs on an individual host; the source and sink

nodes as well as the coordinator (if needed) run on another

separate host. As no framework except SID-UP actually sup-

ports distribution, we simulate network latency by injecting

waiting times wherever a method call would have to be send

over the network, i.e. whenever a node sends a pulse notifi-

3 All tests were performed with Scala 2.10.3, Sun Java HotSpot Client VM

1.7 update 10, Windows 7 64 bit and an Intel Core i5-3320M with 8 GB of

RAM. To run the benchmarks, we fixed a bug of Scala.Rx’s[26] garbage

collection support present in commit e4f4070cac cloned on 11/26/2013,

which caused linearly increasing execution time.

cation to a node on another host, or whenever the coordinator

sends a command to a node on a different host than its own.

This may seem like a disadvantageous comparison for algo-

rithms dedicated to distributed graphs, since only very few

edges are actually remote connections. But, the main dis-

advantage of the topological sorting-based algorithms stems

from remote communication with the priority queue, which

happens outside of the dependency edges between nodes.

Therefore, these few remote edges suffice to show the full

effect.

The left graph in Figure 12 shows for each algorithm the

time it takes to complete an update turn on the graph in Fig-

ure 10 when simulating various amounts of delay on the

network edges. SID-UP and ELMs clearly outperform the

other algorithms, especially considering the double logarith-

mic scaling. All curves are approximately linear, meaning

that all algorithms scale linearly with increasing network la-

tency. But, because of double logarithmic scaling, the dif-

ferences between these curves indicate different factors of

scaling with latency, with SID-UP and ELMs achieving the

lowest factor.

This is in line with previous findings that mark-and-

sweep algorithms generally outperform those based on topo-

logical sorting [27]. We did not include a straight-forward

mark-and-sweep algorithm in the comparison, as executing

both phases would immediately imply duplicating all re-

mote message delays. But, both SID-UP and ELMs can be

seen as special cases of mark-and-sweep algorithms, where

the sweep phase is done implicitly: In SID-UP, all nodes

n ∈ CC are implicitly marked through the set intersection

test. In ELMs, simply every node is implicitly considered

marked for every turn.

A comparison of the curves of SID-UP and ELMs enables

to estimate the overhead caused by the more complex set op-

erations in SID-UP. As there is barely a difference, this com-

parison indicates that this overhead is negligible. But, the
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Figure 13. Number of messages for propagating through different sub-graphs from Figure 10.

overhead is not constant: The larger the sets involved in these

operations become, the more the overhead for SID-UP will

grow. To evaluate this in detail, we repeat the same experi-

ment with around 150 additional sources spread evenly over

all nodes in the graph. With about two input nodes for every

dependent node, this gives an overestimation of the impact

they will have on SID-UP in normal use cases, as usually de-

pendent nodes make up the majority of a dependency graph.

Further, we do not update those sources to keep their im-

pact on the other algorithms minimal. The right graph in Fig-

ure 12 shows the results: SID-UP and ELMs perform slightly

worse, while there is essentially no impact on the other al-

gorithms. This is to be expected as for SID-UP the identifier

sets grow and ELMs’s global processing has to send addi-

tional messages over all the new sources. However, SID-UP

and ELMs still clearly outperform the other algorithms and

still do not differ much from each other. Hence, we conclude

that even in the presence of many large identifier sets SID-

UP’s overhead remains negligible.

To empirically validate the superiority of SID-UP over

ELMs from the message count analysis in Section 4.3, we

counted the number of message sends by each algorithm

when updating different sets of sources from the graph in

Figure 10. Through this message count the overall usage

of computational resources to process an update turn can

be estimated. This usage is not fully measured in the tim-

ing benchmarks, because it is processed in parallel to the

slower path through the graph along which value changes

are actually computed. Yet, it blocks other workloads and

requires more energy. Figure 13 shows the results: For all

algorithms the number of change pulses is identical in each

case. But, the algorithms differ in their additional messages:

Scala.React and both versions of Scala.Rx require additional

coordinator messages for changed nodes. SID-UP requires

no coordinator messages, but instead propagates a few pulse

messages from unchanged nodes. These two sets of mes-

sages are generally incomparable because the number of ad-

ditional coordinator or respectively unchanged pulse mes-

sages are dependent on the actual value changes from the

user computations that occur during the update turn. ELMs,

however, performs clearly worse: Because of its globally

processed update turns, it requires the same number of mes-

sages for every update. This is the number that SID-UP uses

only in the worst-case, when all sources a, b and c and suc-

cessively the entire graph are updated – a use case that es-

sentially never occurs in practice as user code usually acts

localized and only admits new values to very few select

sources. In all of these common cases, SID-UP uses strictly

less messages to complete the update turn, meaning it con-

sumes less computational resources overall. With the set op-

eration overhead being negligible and the overall resource

consumption being lower, SID-UP thus outperforms ELMs.

Further, ELMs relies on unbounded one-to-many communi-

cation, visible here in the form of one coordinator message

per source. This puts additional requirements on the infras-

tructure that must be available to run ELMs, making it more

difficult to use.

Summarizing, we conclude that SID-UP provides the best

trade-off between update turn completion time and computa-

tional resource usage. Furthermore, it is the only algorithm

that does not rely on unbounded one-to-many communica-

tion, and thus is the easiest to execute in any given dis-

tributed environment.

6. Related Work

We discuss extentions of reactive programming towards par-

allelism and distribution and summarize state of the art in

reactive programming and related fields.

6.1 Parallel and Distributed Reactive Programming.

Scala.Rx [26] implements a propagation algorithm that sup-

ports a limited amount of parallelism during update prop-

agation. ELM [9] enables more parallelism and introduces

concepts of pipelined and asynchronous update turns. Both

of their propagation algorithms, however, have major down-

sides when used in distributed settings. We discussed these
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downfalls in Section 2.4 and showed a comparison against

SID-UP in Sections 4 and 5.2.

Flapjax [22] implements Reactive Programming in

JavaScript to support reactive Web applications. However,

Flapjax addresses only client side code in the client-server

model. The server side of the application can potentially be

implemented in a reactive language, but the reactive system

on the client and on the server are not aware of each other.

As a result there is not guarantee of glitch freedom spanning

the whole application.

AmbientTalk/R [19] provides Reactive Programming for

mobile peer-to-peer networks. It does, however, strongly fo-

cus on mobile clients and unreliability in communication

stemming from network topology changes as clients move

around and join or leave the network. In such an environ-

ment, the cost of maintaining glitch freedom is infeasibly

high. Thus, like Flapjax, AmbientTalk/R does not provide

any concept for glitch freedom involving multiple hosts.

6.2 Technologies for Reactive Applications

Reactive Languages track the dependencies among reac-

tive values and automatically perform the necessary up-

dates. We already described Scala.React (Scala) and Flapjax

(JavaScript). FrTime [8] is a reactive language implemented

on top of Scheme. In contrast to Scala.React, which is based

on the DSL support offered by the Scala language, and Flap-

jax, which is provided as a library or a dedicated JavaScript

preprocessor, FrTime leverages macro expansion to lift tra-

ditional values to reactives. REScala [24] is an embedding

of reactive programming in Scala and focuses on the inte-

gration of reactive abstractions into object-oriented applica-

tions [25]. Demetrescu et al. [11] describe a runtime environ-

ment which natively supports reactive memory to implement

dataflow constraints.

Functional Reactive Programming has been originally

proposed by Conal Elliott in the strictly functional language

Haskell [13]. Recent work in functional reactive program-

ming focuses on enforcing good properties of reactive appli-

cations. Krishnaswami et al. [18] use linear types to guar-

antee bounded-space execution of reactive programs. Krish-

naswami provides an FRP implementation for programs that

are provably free of spacetime leaks [17]. Jeffrey [16] devel-

oped a type system for FRP that provides liveness guarantees

of reactive programs.

Self-Adjusting Computation is about deriving incremen-

tal algorithms from batch ones [2]. In self-adjusting compu-

tation, programs are statically analyzed to detect the depen-

dencies among values and derive a dependency graph simi-

lar to the one used in reactive programming. This technique,

originally developed for the functional setting, has been re-

cently applied to imperative programs [1]. An interesting

line of research involves the application of these concepts

to streams in the context of Big Data. Incoop [5] is an incre-

mental MapReduce [10] framework. When the input dataset

changes, Incoop performs a fine-grained update of the out-

put previously computed. The whole incrementalization pro-

cess is transparent to the user that interacts with a traditional

MapReduce interface.

Synchronous Dataflow Languages model reactive appli-

cations as reactive networks where a signal is propagated

synchronously. Examples of such languages include Lus-

tre [7] Signal [15], and Esterel [4]. Synchronous dataflow

languages focus on bounded memory and time executions

which are fundamental for real-time and critical systems

such as microcontrollers.

Declarative Networking approaches enable the concise

specification of network protocols and services that are com-

piled to dataflow programs. Network Datalog [20] is such an

approach: It provides incremental updates to the algorithm

result as a response to network changes. There are, however,

important differences between Network Datalog and (Dis-

tributed) Reactive Programming. While the former focuses

on the specific domain of network protocols and requires

programming in Prolog-style rules and queries, the latter fo-

cusses on general purpose applicability and ease of use by

adopting and extending more mainstream programming lan-

guages.

7. Conclusion and Future Work

In this paper, we presented distributed reactive programming

in Distributed REScala. DRP can improve the design of

distributed, observer-based applications as indicated by the

small-scale case study presented in this paper. We showed

that existing algorithms for (local) reactive programming are

not suitable for distribution. The algorithm of Distributed

REScala, named SID-UP, reduces the amount of messages

sent over the network and features a high degree of par-

allelism, while still preserving glitch freedom. We demon-

strated empirically that SID-UP outperforms existing solu-

tions in terms of the trade-off between update turn comple-

tion time and computational resource usage.

There are several areas for future work. We plan to extend

our approach to support concurrent update turns and to han-

dle failures. We will also conduct more case studies using

distribute reactive programming and apply distributed reac-

tive programming to refactor existing observer-based appli-

cations.
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